1. Let T be an arbitrary metric space and $f : \mathbb{R} \times T \to \mathbb{R}$ a function. Assume that f(.,t) is a measurable function for each $t \in T$ and f(x, .) continuous function for each $x \in \mathbb{R}$. Assume also that there exists an integrable function g such that for each $t \in T$ we have $|f(x,t)| \leq g(x)$ for almost all $x \in \mathbb{R}$. Show that the function $F : T \to \mathbb{R}$ defined by

$$F(t) = \int_{\mathbb{R}} f(x,t) \ dx$$

is a continuous function.

2. Let f be integrable over $(-\infty, \infty)$, then show that

a)

$$\int f(x)dx = \int f(x+t)dx$$

b) Let g be bounded measurable function. Then show that

$$\lim_{t \to 0} \int_{-\infty}^{\infty} |g(x)[f(x) - f(x+t)]| = 0$$

-	-	

3.

- a) Let $\{f_n\}$ be a sequence of real valued measurable functions. If $\{f_n\}$ converges to f in measure, show that $\{f_n\}$ is a Cauchy sequence in measure.
- b) Show that if a sequence $\{f_n\}$ of integrable functions converge to f in L^1 , then $\{f_n\}$ converges f in measure. Is the converse true?

Note: We say $\{f_n\}$ is **Cauchy in measure** if for every $\epsilon > 0$,

$$m(\{x: |f_n(x) - f_m(x)| > \epsilon\}) \to 0 \text{ as } m, n \to \infty$$

and we say $\{f_n\}$ is **converges in measure** to a measurable function f if for every $\epsilon > 0$

 $m(\{x: |f_n(x) - f(x)| > \epsilon\}) \to 0 \text{ as } n \to \infty$

4. Compute the following limits and justify the calculations:

a)
$$\lim_{n \to \infty} \int_0^\infty [1 + (x/n)]^{-n} \sin(x/n) dx$$

b) $\lim_{n \to \infty} \int_0^\infty n \sin(x/n) [x(1+x^2)]^{-1} dx$
c) $\lim_{n \to \infty} \int_a^\infty n (1 + n^2 x^2)^{-1} dx$

5. Show that
$$\int_0^\infty x^{2n} e^{-x^2} dx = \frac{(2n)!}{2^{2n}n!} \cdot \frac{\sqrt{\pi}}{2}$$
 holds true for $n = 0, 1, 2, \cdots$

Hint: Use induction on n and the fact that $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$ (Euler's formula)

6. Show that for
$$a > 0$$
, $\int_{-\infty}^{\infty} e^{-x^2} \cos(ax) \, dx = \sqrt{\pi} e^{-a^2/4}$

Hint: use problem 5 above.

7. Suppose that f is real continuously differentiable function on [a, b], f(a) = f(b) = 0 and that ∫_a^b f²(x)dx = 1. Prove that:
a) ∫_a^b xf(x)f'(x)dx = -1/2
b) ∫_a^b [f'(x)]² · ∫_a^b x²f²(x)dx ≥ 1/4
Hint for part b): recall that < f, g >= ∫_a^b f(x)g(x) dx defines an inner product on C[a, b].